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Abstract

This paper focuses on the analysis of shear band formation in a cohesionless and initially transversely isotropic
granular material based on a hypoplastic continuum approach. The constitutive equation for the evolution of the stress
is formulated with a non-linear tensor-valued function depending on the current void ratio, the Cauchy stress, the rate
of deformation and a structure tensor for anisotropy effects. The possibility of shear band formation in biaxial, plane
strain compression is analyzed and the sensitivity of the shear band orientation to the slenderness of the specimen is
discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In natural sand deposits an initially transverse isotropy can be explained by a preferred orientation of the
long axis of non-spherical particles as a result of the sedimentation process (e.g. Oda et al., 1985). The plane
perpendicular to the deposit direction is called bedding plane and it is a plane of isotropy. Experimental
studies with sand specimens show that the orientation of the bedding plane relative to the principal stress
directions has a significant influence on the stress-strain behavior (e.g. Arthur and Phillips, 1975; Lam and
Tatsuoka, 1988; Tatsuoka et al., 1990). The stiffness and the peak friction angle are higher for loading
perpendicular to the bedding plane than for loading parallel to it. They are also influenced by the mean
pressure and the current density. However, for large monotonic shearing the stress ratio approaches a
stationary value, which seems to be independent of the bedding plane (e.g. Yamada and Ishihara, 1979).
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This indicates that under large shearing the initial anisotropy declines as a result of grain rotations and
grain rearrangements and it may be swept out when the granular material reaches a critical state (e.g. see
Fig. 13 in Lam and Tatsuoka, 1988). In order to model such a behavior a unified description of the
interaction between the loading history, the mean pressure, the density and the parameters of anisotropy is
necessary.

The focus of the paper is on modeling the mechanical behavior of an initially transverse isotropy in
dry and cohesionless granular materials using a continuum approach. For this purpose a particular
hypoplastic constitutive model by Gudehus (1996) and Bauer (1996) for a cohesionless and initially
isotropic material was extended with respect to transverse isotropy. The extended hypoplastic model
takes into account the current void ratio, the Cauchy stress tensor, the rate of deformation, and a
structure tensor which is defined by the dyadic product of the director vector of the plane of isotropy. In
order to model non-linear and inelastic material behavior the evolution equation for the stress tensor
consists of the sum of a tensor function which is linear in the rate of deformation and a tensor function
which is non-linear in the rate of deformation according to the concept of hypoplasticity (Kolymbas,
1985, 1991). In this sense the hypoplastic model can be assigned to a class of constitutive models referred
to as incrementally non-linear models (Darve, 1974, 1991; Chambon, 1989). Critical states are included in
the hypoplastic concept for a simultaneous vanishing of the stress rate and the volume strain rate under
monotonic shearing (Wu and Bauer, 1992; Bauer, 1995; Wu et al., 1996). Transversely isotropic material
properties are included with a certain invariant form of a tensor function given by Boehler and Sawczuk
(1977). The tensor function depends on the stress tensor and on a second order structure tensor and it is
incorporated in the non-linear part of the constitutive equation according to the concept proposed by
Wu (1998). While the coefficients of anisotropy are assumed to be constant in the earlier version by
Wu (1998), an evolution of anisotropy depending on the relative density is considered in the present
version. It is assumed that the influence of the initial anisotropy decreases for large shearing and it is
swept out in critical-states (Bauer and Huang, 1999).

The paper is organized as follows. In Section 2.1 the concept of hypoplasticity is briefly outlined for an
initially isotropic material behavior. Section 2.2 describes the specific form of the evolution equation of the
stress tensor given by Gudehus (1996) and Bauer (1996). Herein the influence of the mean pressure and the
void ratio on the incremental stiffness for an initially isotropic material is taken into account with a single
set of constants. Following Wu (1998) Section 2.3 deals with the extension of the model by Gudehus and
Bauer with respect to initially transversely isotropic material properties and demonstrates the performance
of the model for homogeneous deformations and for constant parameters of anisotropy. In Section 2.4 an
evolution equation for the parameters of anisotropy is presented according to the proposal by Bauer and
Huang (1999). In Section 3 the influence of the orientation of the bedding plane on the formation of shear
bands under plane strain compression is studied. In particular the possibility of a spontaneous shear band
formation of a material element is analyzed for different bedding angles (Section 3.1). Attention is paid to
the lowest stress ratio where a shear band bifurcation is possible. Moreover, the influence of the initial void
ratio and the bedding angle on the bifurcation stress and the corresponding shear band inclination is
studied. In Section 3.2 the sensitivity of the shear band orientation to the slenderness of an initially rect-
angular specimen is investigated for both an initially homogeneous void ratio and an initially probabilistic
void ratio distribution. Concluding remarks are finally made in Section 4.

Throughout the paper compression stresses and strains are defined as negative. Bold lower case, bold
upper case and calligraphic letters denote vectors, tensors of second order and of fourth order, respectively.
In particular, the identity tensor of second order is denoted by I and the identity tensor of fourth order is
denoted by .#. For vector and tensor components indices notation with respect to a rectangular Cartesian
basis e; (i=1,2,3) is used. Operations and symbols are defined as: ab=a;b;, Ab=4;be,
ab=abe®e, I=90eRe, J=101=0i0eReexe, AOB=4;Be0e Qe Qe,
A®B=4;Bue; Qe e, ®e;, AB=A4,B,e e, o :B=A;Bye; ®e;and I : A = 4;;. Herein 6, denotes
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the Kronecker delta and the summation convention over repeated indices is employed. A superimposed dot
indicates a time derivative, i.e. A = dA/d¢, and the symbol [[A]] denotes the jump of the field quantity A
immediately on the plus side and on the minus side of a discontinuity, i.e. [[A]] = AT — A™.

2. The hypoplastic constitutive model
2.1. Inelastic material properties

In hypoplasticity inelastic material properties are modeled with a constitutive equation of the rate type
where the objective stress rate T is expressed by an isotropic tensor-valued function consisting of the sum of
the tensor function .o : D, which is linear in the rate of deformation D, and the tensor function BvD : D,
which is non-linear in D, i.e.

T=«:D+BVD:D. (1)

Herein the fourth order tensor .7 and the second order tensor B are functions of the current Cauchy stress
tensor T and may also depend on additional state quantities such as the current void ratio e (e.g. Wu and
Bauer, 1992; Bauer and Wu, 1994). The constitutive equation (1) is positively homogeneous of the first
order in D, thus the material behavior to be described is rate independent. Depending on the specific
representation of tensor .o/ the function .« : D describes a hyperelastic or hypoelastic material in the sense
of Truesdell (1955). Together with the non-linear team of Bv/D : D in D an inelastic material behavior is
modeled in hypoplasticity with a single constitutive equation and there is no need to distinguish between
elastic and plastic parts of the deformation (Kolymbas, 1985, 1991). Limit states are included in the
constitutive equation (1) for a vanishing stress rate, i.e. for states with o7 : D = —B+v/D : D. Specific rep-
resentations of the tensor functions .o/ and B have to fulfill several conditions which are related to general
principals of rational continuum mechanics and to the mechanical behaviour of granular materials ob-
served in experiments (e.g. Wu and Kolymbas, 1990; Gudehus, 1996; Bauer, 1996). A comprehensive
overview of the procedures followed in finding appropriate functions can be found, for instance, in Wu and
Kolymbas (2000) and Bauer and Herle (2000).

2.2. Pressure and density dependent properties of inherently isotropic materials

The mechanical behavior of cohesionless frictional materials like sand is strongly influenced by the
pressure level and the current density. In order to model such properties the following specific represen-
tation of Eq. (1) for an inherently isotropic material is considered (Gudehus, 1996; Bauer, 1996):

o

T = fi(e,p)[Z(T) : D+ fu(e,p)N(T)VD : D], 2)
with

(M) =as+TaT, 3)
and

N(T) = a(T + T7). (4)

Herein the tensors & (T) and N(T) are functions of the normalized stress tensor T = T/(I: T) and the
deviatoric part T* = T — I/3. Factor a in Eqgs. (3) and (4) depends on the normalized stress deviator T* and
the critical friction angle ¢:
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__ sing (8/3) = 3(T": T°) + /3/2(T" : ) cos(30) /=
‘T3 sing L1 AR 1) cos(30) = ©)

with the Lode-angle 6, which is defined as

I: T

cos(30) = V6 ———.
[I . T*2]3/2

For critical states, which are defined for a stationary stress T, and stationary void ratio e. under a fixed

strain rate D, # 0, factor a is equal to the Euclidean norm of the normalized stress deviator, i.e.

a(T?) =a, = /17 : T, (6)

In particular, for critical states, relation a in (5) represents the stress limit condition given by Matsuoka and
Nakai (1977) as shown in Fig. la. It can be proved that for monotonic shearing the limit stress states given
by relation (6) will asymptotically be reached independent of the initial void ratio and stress state (Bauer,
2000). The influence of the mean pressure p = —1 : T/3 and the current void ratio e on the response of the
constitutive equation (2) is taken into account by the density factor f;, i.e.

fi= (e__e”’ ) (7)
[ €y

and the stiffness factor f;, i.e.

€; ﬂ1—|—e,- hx 3p I=n
s = - I —— - B 8
4 (e) e nhi(T:T)<hs> ®)
with
hi:%_’_l_2\/§s.in(p<ei0_edo>x'
(3—Sll’l(p) 37511190 €co — €do

Herein o < 0.5 and f > 1 are constitutive constants. In particular factor f; models the dilatancy behavior
and the maximum stress ratio while factor f; models the influence of the stress and density on the incre-
mental stiffness. In relations (7) and (8) the maximum void ratio e;, the minimum void ratio e, and the
critical void ratio e. are pressure dependent according to

A 7"-1 e a
T Ax €o €
“Tc
€co &
€do
€d
T, f, >
b
(@ (®) o)

Fig. 1. (a) Contour of the stress limit condition in the deviator-plane, (b) decrease of the maximum void ratio e;, the critical void ratio
e. and the minimum void ratio e, with increasing mean pressure p.
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e e; e 3p\"

ein_edo_eco_exp|: (hv> :|7 (9)
where ¢;,, e4, and e, are the corresponding values for p ~ 0 as shown in Fig. 1b. In relation (9) the
parameter A, with the dimension of stress scales the mean pressure p while the dimensionless exponent n
reflects the degradation of the limit void ratios and the critical void ratio with increasing pressure. It is
obvious that with relation (9) the density factor f; also depends on the mean pressure p with the exception
of states where the current void ratio is equal to the critical one. In this case the function of f; becomes
equal to one, which is independent of the magnitude of the mean pressure. This property of the density
factor plays an important role for a consistent modeling of critical states (Bauer, 1995, 2000). For the
evolution of the current void ratio e the assumption is made that the volume change of grains can be
neglected. To this end, the rate of the void ratio can be directly derived from the mass balance, which yields

é=(1+e)l:D. (10)
Altogether the hypoplastic model for an initially isotropic material behavior includes eight constants. The
following values ¢ = 30°, &, = 190 MPa, n =04, ¢;,, = 1.20, e, = 0.82, ¢4, = 0.51, 2 = 0.14, f = 1.05 are
adapted to a medium quartz sand and used for the numerical calculations in the present paper. Details
about the calibration procedure can be found for instance in Bauer (1996) and Herle and Gudehus (1999).

2.3. Initially transversely isotropic material

In order to take into account anisotropic properties, the state variables of the hypoplastic constitutive
model are extended with a structure tensor S =s ® s represented by the dyadic product of the normal
vector s of the isotropic plane or so-called bedding plane (Fig. 2). It was proposed by Wu (1998) to
incorporate the structure tensor S in the non-linear part of the constitutive equation for the stress rate by a
linear transformation of tensor N(T) with a fourth order tensor 2(S). Thus, the extended evolution
equation for the stress tensor reads

T = fi(e,p) [g(f) D+ fi(e,p)?(S) : N(T)VD : D, (11)
with
PS)=(n +n3—=20,)(S®S) +n3.f + (1, —m)(SOT+TOS). (12)

S
L Bedding plane

@

Fig. 2. Normal vector s of the isotropic plane (bedding plane): (a) orientation of the bedding plane during sedimentation, (b) stress
components 7;; and inclination angle @ of the bedding plane with respect to a fixed Cartesian co-ordinate system.
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Fig. 3. Triaxial compression under a constant lateral stress of 7;; = —100 kPa, an initial void ratio of ¢y = 0.6, for constant parameters

of anisotropy and for bedding angles of ® = 0°, 30°, 60°, 90°: (a) mobilized friction angle ¢,,,, against vertical strain &,,, (b) evolution
of the void ratio e against vertical strain &,.

Herein 7; (i = 1,2, 3) are material parameters. It should be noted that the choice of representation (12) is
motivated by a similar form originally proposed by Boehler and Sawczuk (1977) to describe the plastic
behavior of a transversely isotropic material. Anisotropy is more pronounced for #; < 1 and vanishes for
n; = 1. For the latter case the tensor function #2(S) in Eq. (12) reduces to .# and the constitutive relation (2)
for an initially isotropic material is recovered.

For , = 0.8805, n, = 0.9764 and n; = 1.0 the response of the constitutive model for triaxial compres-
sion under constant lateral pressure of 7;; = —100 kPa and an initial void ratio of ¢y = 0.6 is shown for
different bedding angles in Fig. 3. The peak friction angle ¢, = max(¢,,,,) is higher and the dilatancy is
more pronounced for lower bedding angles. After the peak the mobilized friction angle ¢, =
arcsin[(Ty, — T11)/(T», + Ti1)] slightly decreases and tends towards a stationary value.

2.4. Evolution equation for the parameters of anisotropy

It is obvious that with the constitutive equation (11) and for 5, # 1 the stress limit condition (6) is no
longer met for an initially transverse isotropic material, i.e. the limit stress ratio is influenced by the ori-
entation s of the isotropic plane as it was also discussed by Wu (1998). However, the experimental
investigations by Yamada and Ishihara (1979) and Lam and Tatsuoka (1988) with initially transverse
isotropic sand specimens show that for large monotonic shearing the stress ratio is independent of the initial
orientation of the bedding plane. This indicates that under large shearing the initial anisotropy diminishes
and may be swept out when the material reaches a stationary state. In order to reproduce the experimental
findings an evolution of 7, corresponding to the evolution of the density factor f, was proposed by Bauer
and Huang (1999). Herein a degradation of the effect of the initial anisotropy is motivated by the experi-
mental finding that under shearing accompanied by dilatancy, a reorientation of particles and consequently
a reorientation of the direction of the contact planes takes place. Therefore, a relation between the evo-
lution of dilatancy and the evolution of the parameter of anisotropy seems to be appropriate. Specifically,
the rate of #; is assumed to be proportional to the rate of f;, i.e.

;= ’7f0’1ifda (13)
where 7, (i =1,2,3) are constitutive constants. The integration of Eq. (13) with respect to the condition
n;(fa =1) =1 leads to

n; = expn,(fa — 1)]. (14)
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Thus, the quantities of #, are directly related to the value of the density factor f; given in Eq. (7). It is easy
to prove that for e = e, the density factor and the parameters of anisotropy become f; = 5, = 1. For such a
critical state the corresponding critical void ratio and the critical stress ratio are independent of the initial
anisotropy and the initial void ratio. Therefore, the stress limit condition (6) is also met for the extended
constitutive equation (11) if the evolution equation (13) for the parameters of anisotropy is taken into
account.

Based on the improved model the prediction for triaxial compression under a constant lateral stress of
Ty = —100 kPa, an initial void ratio of ey = 0.6, and the parameters #,, = 0.8, #,, = 0.15 and 173, = 0 is
shown for different bedding angles in Figs. 4 and 5. In contrast to the results in Fig. 3 the stationary value of
the mobilized friction angle is now independent of the initial anisotropy. Consequently, for stationary states
the stress limit condition (6) is also met for the case of an initially transverse isotropy. With the present
hypoplastic model the peak friction angle depends on both the orientation of the bedding plane and on the
density factor f;. The influence of the initial void ratio ¢, and the bedding angle ® on the peak friction angle
¢p = max(d,,.p,) is shown in Fig. 5. The peak friction angle is higher for @ = 0°. The influence of the
orientation of the bedding plane is more pronounced for an initially lower void ratio. In accordance with

Brmob 40 e 085 —
fie .
—_——== — - — 60
30 ,/’/ T — o
0.75
— - -
2 — {’ - ’,_ﬁ
PO e
. —— 0.65 P
——__ 30° '
0 0.60 \‘///
— - 9
0 0.55
0 0.1 0.2 0.3 04 b 0 0.1 0.2 0.3 04
a — _
(@ g, ® €5
Fig. 4. Triaxial compression under a constant lateral stress of 7;; = —100 kPa, an initial void ratio of ¢y = 0.6 and for bedding angles

of ® = 0°, 30°, 60°, 90°: (a) mobilized friction angle ¢, against vertical strain &, (b) evolution of the void ratio e against vertical
strain &.

¢P45""'I""'I""'

40

35
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Fig. 5. Peak friction angle ¢, against the bedding angles @ for different initial void ratios e,.
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Fig. 6. Oedometric compression starting from an initially isotropic stress state of 7, = —1 kPa and a void ratio of ¢y = 0.53: (a) vertical

stress Ty, against the vertical strain ¢, (b) shear stress 7}, against the vertical strain &,.
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Fig. 7. Oedometric compression starting from an initially isotropic stress state of 7, = —1 kPa and different initial void ratios e:

(a) stress ratio 77, /T, against the bedding angle O, (b) stress ratio T3/ T, against the bedding angle ©.

the experimental results (e.g. Lam and Tatsuoka, 1988) the peak friction angle becomes a minimum for
O =~ 60°.

The influence of the orientation of the bedding plane on the behavior under oedometric compression is
shown in Fig. 6. For all calculations an initially isotropic stress state of 7 = —1 kPa and a void ratio of
eo = 0.53 was assumed. The stress—strain relation is non-linear and the magnitude of the vertical stress 75,
increases faster for a lower bedding angle (Fig. 6a). Shear stresses 71, = 75, occur as a result of the strain
controlled test with the exception of bedding angles of ® = 0° and @ = 90° (Fig. 6b). The shear stress is
about sixty times less than the normal stress. The lateral normal stresses 77, and 733 are only equal for
© = 0°. As shown in Fig. 7 the stress ratios 7};/T5, and T3;/T» increase with an increase of the bedding
angle and the changes are more pronounced for lower void ratios.

3. Investigation of the formation of shear bands

In this section the influence of the orientation of the bedding plane on the formation of shear bands
under plane strain compression is studied. The possibility of a spontaneous shear band formation is
investigated based on the general bifurcation theory given by Hill (1962), Rudnicki and Rice (1975) and
Rice and Rudnicki (1980). The bifurcation condition is derived in a way similar to the ones outlined for
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isotropic hypoplastic material models in earlier publications (e.g. Chambon and Desrues, 1985; Chambon,
1989; Wu and Sikora, 1991, 1992; Charlier et al., 1991; Bauer, 1999; Wu, 2000; Desrues and Chambon,
2002; Bauer et al., 2003). A comprehensive historical review of the individual contributions can be found
for instance in Tamagnini et al. (2000, 2001). In order to investigate the sensitivity of the shear band
orientation to the slenderness of the specimen the hypoplastic constitutive model was implemented in the
commercial finite element program Abaqus as outlined by Huang (2000). A four-noded quadrilateral ele-
ment for plane strain conditions with bilinear interpolation for the displacements is used. To alleviate the
phenomenon of so-called volumetric locking a selective reduced integration technique is applied (Nagtegaal
et al., 1974). The geometric non-linearity is taken into account using an updated Lagrangian formulation.
The global equilibrium is formulated on the basis of the principle of virtual power and the non-linear
equation system is solved by the Newton—-Raphson iteration method. For the time integration of the
constitutive equations a sub-stepping algorithm (Roddeman, 1997) is applied.

3.1. Bifurcation analysis

In the following the possibility of a spontaneous formation of a shear band is studied for a certain state
(T, e) and a certain bedding angle ® with respect to a fixed Cartesian co-ordinate system as sketched in Fig.
8. The shear plane or so-called discontinuity plane is characterized by a different velocity gradient Vv on
either side of this plane. The jump of the velocity gradient can be represented by the dyadic product of the
unit normal n of the discontinuity plane and a vector g defining the discontinuity mode of the velocity
gradient, i.c.

[VV]] =g®n#0. (15)

Continuous equilibrium across the discontinuity requires (Rice and Rudnicki, 1980):

[[T]ln = 0. (16)

Herein the jump of the stress rate, can be related to the jump of the Jaumann stress rate, i.e.
[[T]] = [[T]] + [[W]]T — T[[W]], where T is the response of the hypoplastic model (11) and W denotes the
antisymmetric part of the velocity gradient. Inserting the Jaumann stress rate into Eq. (16) leads to the
relation:

S{(Z - [[DI)n + 2/ fa(2 : N)n + [W]]Tn — T[[W]]n = 0, (17)

with [D]] = [g®n+n®g]/2, [W]]=[g®n—n® g]/2 and A = [[VD : D]|. At the onset of shear banding
the stress and the void ratio are the same on either side of the discontinuity plane. Thus, the quantities f;, 1,

T2 4
Unit normal of the
n Shear band bedding plane:
s=[—sin®, cos O, 0]
Bedding plane Unit normal of the
shear band:
%3 - ﬂ\ i n=[—sin¥, cosd, 0|7
I

Fig. 8. Orientation of the bedding plane @ and of the shear band ¥ and 9 = IT — o).
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Z, ? and N are also the same and they are independent of the velocity gradient. It is a peculiarity in
hypoplasticity that the possibility of different incremental stiffnesses due to a different velocity gradient on
either side of the discontinuity is taken into account by the single relation (17) and there is no need to
distinguish whether the material outside the shear band undergoes loading or unloading (e.g. Chambon and
Desrues, 1985; Wu and Sikora, 1991; Bauer and Huang, 1997). Relation (17) can be rewritten as Kg = Ar or

g=/K'r, (18)
with K= f[@[I+n®n)/2+ (Tm@n)T]+[n(Ta)I— n@n)T-T+Tmhon)/2, and r=
—fofa(# : N)n. Inserting relation (18) for g into the norm of [[D]], ie. [D]] : [[D]] =

[(gg) + (gn)’]/2 = 7 leads to the bifurcation condition:
-1 -1 NN
1(9) = (K"'r)(K"'r) + ((K 'r)n) 7 (19)
2 4]
The components of the unit normal n of the discontinuity plane are related to the unknown shear band
inclination angle 9, i.e. n = [— sin ¥, cos ¥, O]T with respect to the co-ordinate system in Fig. 8. K and r

depend on the current state quantities (e, T) and on the inclination angle @ of the bedding plane. In order to
find the lowest possible bifurcation stress ratio the value of /|| can be set equal to 1 (Wu and Sikora, 1992;
Bauer, 1999). Thus, relation (19) represents an equation for the unknown 1}, whereby only real solutions to
(19) indicate the possibility of a shear band bifurcation.

In the following the bifurcation condition (19) is examined for stress paths which are related to
homogeneous compression under plane strain conditions and a constant lateral pressure starting from an
isotropic stress state (Fig. 9). The lowest bifurcation stress ratio obtained from the bifurcation analysis
occurs before the peak state and it is marked by a dot. Therefore the solid curves in Fig. 9 denote states in
which a spontancous shear band bifurcation is not possible. But states above the first bifurcation point
(dotted/dashed curves) again fulfill criterion (19) also for 7y > |A| as discussed in detail for an inherently
isotropic material by Bauer (1999). The lowest bifurcation stress ratio is higher for a lower bedding angle.
Solutions to the bifurcation condition (19) are analyzed within 0° <4 < 180° as shown in Fig. 10 for
bedding angles of 0°, 30°, 60° and 90°. The analysis shows that for @ = 0° and @ = 90° (Fig. 10a, d) two
shear band inclination angles ¢ are obtained at the same bifurcation stress state for f() = 0. The two

Tll | 1
4 - =
........... e=0°

3 - -
I ——= ©=30°

N 6 =60 1
I —== @ =90°

1 1 L L | L L L 1 L L L
0 4 8 12

—&,, %]

Fig. 9. Stress—strain relation and onset of shear band bifurcation for homogeneous compression under plane strain conditions and a
constant lateral pressure 77, = —100 kPa, an initial void ratio ¢y = 0.6 and different bedding angles ©.
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)

(d)

U]

Fig. 10. Function f(}) corresponds to bifurcation point for bedding angle: (a) ©® = 0°, (b) @ = 30°, (c) @ = 60°, (d) ©® = 90°.
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possible shear bands are symmetric to the x,-axis. However, within the range of 0° < ® < 90° only one
single shear band is possible at the lowest bifurcation stress state and the corresponding shear band
inclination angles ¥ are greater than 90°. The results in Fig. 10b and c show that the difference between the
two peak values for f(«) is very small, which indicates that a shear band within the range of 0° < ¥ < 90°
could also appear as a result of deviations from the ideal conditions assumed for the present investigation.
Moreover, for states beyond the first bifurcation point more than one shear band is possible and also shear
bands within the range of 0° < ¢ < 90° will occur. In contrast to an isotropic material the inclination of the
second shear band obtained for an anisotropic material is usually not symmetric to the x, axis as can be
detected in Fig. 10b and c. The supplementary shear band inclination angle ¥ = 180° — ¢ versus
the bedding angle @ is represented in Fig. 11a. The predicted shear band inclination ¥ has a maximum
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Fig. 11. (a) Supplementary inclination angle 9 = 180° — ) versus bedding angle @, (b) shear band inclination ¥ versus initial void ratio
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for © ~ 20° while the minimum value is obtained for @ = 90°. The influence of the initial void ratio
ey on the shear band inclination ¢ is shown for various bedding angles @ in Fig. 11b. The predicted
shear band inclination is higher for a lower void ratio and decreases with an increase of the void
ratio.

3.2. Influence of the off-axis loading on the shear band orientation

The bifurcation analysis carried out in the preceding section does not reflect the complete bifurcation
and stability behavior of a standard biaxial compression test with a mixed control of the stress and dis-
placement boundary conditions. For an anisotropic material the principal stresses and the principal strains
are not usually coaxial so that the stress and void ratio distribution within a real specimen becomes
inhomogeneous as a result of the off-axis loading. The off-axis loading can show a strong influence on the
orientation of the shear band depending on the slenderness of the specimen as demonstrated in the fol-
lowing for two different sizes of rectangular samples: a slender sample with an initial width of 25 mm and a
height of 100 mm, and a stout sample with an initial width of 50 mm and a height of 100 mm. For the finite
element calculation the samples are discretized by quadratic elements with a length of 1.25 mm. The test is
controlled by increasing the vertical displacement at the top parallel to the bottom. The horizontal
movement of the top side and the bottom side is unrestricted with the exception of the center of the top side.
On the vertical sides of the specimen the pressure is kept constant and the boundaries are free to move. For
all calculations the same initially isotropic stress states of 7 = —100 kPa and a bedding plane angle of
® = 30° are assumed.

For the case of a slender specimen and an initially homogeneous void ratio of ¢y = 0.6 the distribution of
the deviatoric strain rate and of the void ratio in the deformed configuration is shown in Fig. 12 for several
vertical displacements. In particular the darker area in Fig. 121 means a higher deviatoric strain rate, while
the brighter area in Fig. 1211 means a higher void ratio as a result of dilatancy. The rectangular specimen
assumes a skewed shape (S-shape) at a relatively low strain level. This is different from the result with an
isotropic model, where the specimen keeps its rectangular shape up to a fairly high strain level (Bauer and
Huang, 1997). The distortion of the anisotropic specimen is ascribed to the non-coaxiality between stress
and strain rate. A closer examination of the expression 2(S) in the constitutive equation (11) reveals that
the stress and strain rates are coaxial only for the bedding angles of 0° and 90°. It should be noted that in
the present finite element calculation the location of strain localization is triggered by the off-axis loading
and no weak element is introduced to initiate the onset of strain localization. Thus, strain localization
develops from the middle of the sample (Fig. 12.1.a). The orientation of intense strain localization right
after the onset is greater than 90° as it is also obtained from the shear band bifurcation analysis in Section
3.1. However, with advanced vertical compression the area of intense strain localization jumps to an
inclination angle of less than 90° as can be detected by comparing Fig. 12.1.a with Fig. 12.1.b, and the
orientation of the final shear band lies within the same quadrant as the inclination of the bedding plane
(Fig. 12.1.¢).

While the deviatoric strain rate distribution is instantaneous, the corresponding contour plot of the void
ratio is cumulative and represents the deformation history within the sample (Fig. 12.11.a—c). It is clearly
visible that the zone of strain localization in Fig. 12.1.c is smaller than the band of higher void ratios in Fig.
13.11.c. This suggests that the distribution of the void ratio does not clearly permit an unequivocal iden-
tification of the active thickness of the shear band. In this context it is worth noting that the present finite
element calculation is more of a qualitative than quantitative nature because the thickness of the localized
zone depends on the size of the finite element. This shortcoming of classical continuum models can be
overcome for instance by an extension of the constitutive model to a Cosserat continuum as proposed for
an isotropic hypoplastic material model by Tejchman and Bauer (1996), Tejchman (1997), Tejchman and
Gudehus (2001), Huang et al. (2002), and Huang and Bauer (2003).
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Fig. 12. Biaxial compression of a slender sample (4/b = 4) under a constant lateral pressure and an initially constant void ratio: (I)
concentration of the deviatoric strain rate and (II) contour plot of the void ratio for a vertical displacement of: (a) 5 mm, (b) 6 mm and
(c) 7 mm.

In order to investigate the sensitivity of the shear band orientation with respect to the fluctuation of the
initial density a finite element calculation with a probabilistic distribution of the initial void ratio was
performed. Herein the probabilistic distribution of the void ratio is modeled in the same way as proposed
by Shahinpoor (1981) and applied to finite element calculations by Niibel (1998). The results obtained for
the slender sample are shown in Fig. 13.

A comparison of Fig. 12 with Fig. 13 at a low strain level shows that the skewed specimen shape (Fig. 12)
cannot be observed in Fig. 13. It seems that the distortion of the specimen is suppressed by the probabilistic
void ratio. This interesting phenomenon deserves further investigation. Furthermore, a crossed band
pattern with intense strain localization can be observed in the same configuration (Fig. 13.1.a and 1.b), while
only one single band is dominant in the case of an initially constant void ratio (Fig. 12.1.a). With advanced
vertical compression strain localization continues to localize only within a single band in both cases (Fig.
12.1.c and Fig. 13.1.c). The location of the final band is influenced by the probability distribution of the
initial void ratio. However, the inclination of the shear band is the same in both cases with homogeneously
and probabilistically distributed void ratios.
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(ILa) (ILb) (ILc)

Fig. 13. Biaxial compression of a slender sample (%/b = 4) under constant lateral pressure and probabilistic distribution of the initial
void ratio: (I) concentration of the deviatoric strain rate and (II) contour plot of the void ratio for a vertical displacement of: (a) 3.5
mm, (b) 4 mm and (¢) 7 mm.

The influence of the size of the sample on the final orientation of the shear band is shown in Fig. 14 for a
stout sample with a probabilistic distribution of the initial void ratio. As the inclination of the specimen
remains small, the off-axis loading is not significant so that the inclination of strain localization at the
lowest possible stress state becomes dominant. Thus, the ratio of the height to the width of the sample
determines the off-axis loading and consequently influences the orientation of the final shear band.

4. Conclusions

The present paper treats initial and induced anisotropy in a unified way. The initial anisotropy is ac-
counted for by a structure tensor, which is defined by the dyadic product of the normal vector of the
isotropic plane. In order to account for the influence of particle rotation at the microscopic level the
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(ILa) (ILb) (ILc)

Fig. 14. Biaxial compression of a stout sample (#/b = 2) under constant lateral pressure and probabilistic distribution of the initial void
ratio: (I) concentration of the deviatoric strain rate and (II) contour plot of the void ratio for a vertical displacement of: (a) 4 mm, (b)
4.5 mm and (c) 7 mm.

coefficients of the tensorial function are allowed to evolve. It is assumed that for large shearing the influence
of anisotropy declines and the stress ratio and the volume strain tend towards a stationary state which is
independent of the initial state.

The effect of initial anisotropy on shear band formation is investigated by analytical and numerical
methods. The analytical results show that shear banding is strongly influenced by the stress state, the
current void ratio and the orientation of the bedding plane. At the lowest bifurcation stress ratio only a
single shear band is possible with the exception of loading parallel or perpendicular to the direction of the
bedding plane, where two symmetric shear bands appear. The inclination of the shear band is higher for
lower void ratios and lower bedding angles. In the case of a slender sample the results of the numerical
simulations of plane strain compression tests show a jump from a steep shear band to a flat shear band with
increasing axial displacement. Thus the orientation of shear strain localization obtained from the analytical
bifurcation analysis is different from the orientation detected under larger deformation. Since the analytical
solution deals with one single element under uniform stress, the shear band orientation may deviate from
that appearing in a full boundary value problem. The distribution of the deviatoric strain rate and the void
ratio justifies distinguishing between the active thickness of the shear band in the current configuration and
the shear band thickness related to the history of shear dilatancy which is manifested by a higher void ratio.
The calculations with an initially probabilistic void ratio distribution show numerous potential shear bands
at low strain level. With increasing deformation a dominant shear band emerges out of the numerous
potential shear bands. The latter is thought to be particularly relevant for progressive failure in natural
sand deposits, where the void ratios also vary within a wide range.
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The present paper is a first attempt in the numerical investigation of shear band formation in anisotropic
sand. The result on shear band thickness is only indicative, since the underlying constitutive model does not
possess a characteristic length. However, the constitutive equation can be readily extended to incorporate a
characteristic length via the Cosserat continuum. Nevertheless the main outcomes of the present paper will
remain valid.
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