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Abstract

This paper focuses on the analysis of shear band formation in a cohesionless and initially transversely isotropic

granular material based on a hypoplastic continuum approach. The constitutive equation for the evolution of the stress

is formulated with a non-linear tensor-valued function depending on the current void ratio, the Cauchy stress, the rate

of deformation and a structure tensor for anisotropy effects. The possibility of shear band formation in biaxial, plane

strain compression is analyzed and the sensitivity of the shear band orientation to the slenderness of the specimen is

discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In natural sand deposits an initially transverse isotropy can be explained by a preferred orientation of the

long axis of non-spherical particles as a result of the sedimentation process (e.g. Oda et al., 1985). The plane

perpendicular to the deposit direction is called bedding plane and it is a plane of isotropy. Experimental

studies with sand specimens show that the orientation of the bedding plane relative to the principal stress

directions has a significant influence on the stress-strain behavior (e.g. Arthur and Phillips, 1975; Lam and
Tatsuoka, 1988; Tatsuoka et al., 1990). The stiffness and the peak friction angle are higher for loading

perpendicular to the bedding plane than for loading parallel to it. They are also influenced by the mean

pressure and the current density. However, for large monotonic shearing the stress ratio approaches a

stationary value, which seems to be independent of the bedding plane (e.g. Yamada and Ishihara, 1979).
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This indicates that under large shearing the initial anisotropy declines as a result of grain rotations and

grain rearrangements and it may be swept out when the granular material reaches a critical state (e.g. see

Fig. 13 in Lam and Tatsuoka, 1988). In order to model such a behavior a unified description of the

interaction between the loading history, the mean pressure, the density and the parameters of anisotropy is
necessary.

The focus of the paper is on modeling the mechanical behavior of an initially transverse isotropy in

dry and cohesionless granular materials using a continuum approach. For this purpose a particular

hypoplastic constitutive model by Gudehus (1996) and Bauer (1996) for a cohesionless and initially

isotropic material was extended with respect to transverse isotropy. The extended hypoplastic model

takes into account the current void ratio, the Cauchy stress tensor, the rate of deformation, and a

structure tensor which is defined by the dyadic product of the director vector of the plane of isotropy. In

order to model non-linear and inelastic material behavior the evolution equation for the stress tensor
consists of the sum of a tensor function which is linear in the rate of deformation and a tensor function

which is non-linear in the rate of deformation according to the concept of hypoplasticity (Kolymbas,

1985, 1991). In this sense the hypoplastic model can be assigned to a class of constitutive models referred

to as incrementally non-linear models (Darve, 1974, 1991; Chambon, 1989). Critical states are included in

the hypoplastic concept for a simultaneous vanishing of the stress rate and the volume strain rate under

monotonic shearing (Wu and Bauer, 1992; Bauer, 1995; Wu et al., 1996). Transversely isotropic material

properties are included with a certain invariant form of a tensor function given by Boehler and Sawczuk

(1977). The tensor function depends on the stress tensor and on a second order structure tensor and it is
incorporated in the non-linear part of the constitutive equation according to the concept proposed by

Wu (1998). While the coefficients of anisotropy are assumed to be constant in the earlier version by

Wu (1998), an evolution of anisotropy depending on the relative density is considered in the present

version. It is assumed that the influence of the initial anisotropy decreases for large shearing and it is

swept out in critical-states (Bauer and Huang, 1999).

The paper is organized as follows. In Section 2.1 the concept of hypoplasticity is briefly outlined for an

initially isotropic material behavior. Section 2.2 describes the specific form of the evolution equation of the

stress tensor given by Gudehus (1996) and Bauer (1996). Herein the influence of the mean pressure and the
void ratio on the incremental stiffness for an initially isotropic material is taken into account with a single

set of constants. Following Wu (1998) Section 2.3 deals with the extension of the model by Gudehus and

Bauer with respect to initially transversely isotropic material properties and demonstrates the performance

of the model for homogeneous deformations and for constant parameters of anisotropy. In Section 2.4 an

evolution equation for the parameters of anisotropy is presented according to the proposal by Bauer and

Huang (1999). In Section 3 the influence of the orientation of the bedding plane on the formation of shear

bands under plane strain compression is studied. In particular the possibility of a spontaneous shear band

formation of a material element is analyzed for different bedding angles (Section 3.1). Attention is paid to
the lowest stress ratio where a shear band bifurcation is possible. Moreover, the influence of the initial void

ratio and the bedding angle on the bifurcation stress and the corresponding shear band inclination is

studied. In Section 3.2 the sensitivity of the shear band orientation to the slenderness of an initially rect-

angular specimen is investigated for both an initially homogeneous void ratio and an initially probabilistic

void ratio distribution. Concluding remarks are finally made in Section 4.

Throughout the paper compression stresses and strains are defined as negative. Bold lower case, bold

upper case and calligraphic letters denote vectors, tensors of second order and of fourth order, respectively.

In particular, the identity tensor of second order is denoted by I and the identity tensor of fourth order is
denoted by I. For vector and tensor components indices notation with respect to a rectangular Cartesian
basis ei ði ¼ 1; 2; 3Þ is used. Operations and symbols are defined as: ab ¼ aibi, Ab ¼ Aijbjei,
a � b ¼ aibjei � ej, I ¼ dijei � ej, I ¼ I � I ¼ dikdjlei � ej � ek � el, A � B ¼ AikBjlei � ej � ek � el,

A � B ¼ AijBklei � ej � ek � el, AB ¼ AikBkjei � ej,A : B ¼ AijklBklei � ej and I : A ¼ Aii. Herein dik denotes
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the Kronecker delta and the summation convention over repeated indices is employed. A superimposed dot

indicates a time derivative, i.e. _A ¼ dA=dt, and the symbol ½½A�� denotes the jump of the field quantity A

immediately on the plus side and on the minus side of a discontinuity, i.e. ½½A�� ¼ Aþ 	 A	.
2. The hypoplastic constitutive model

2.1. Inelastic material properties

In hypoplasticity inelastic material properties are modeled with a constitutive equation of the rate type

where the objective stress rate T


is expressed by an isotropic tensor-valued function consisting of the sum of

the tensor function A : D, which is linear in the rate of deformation D, and the tensor function B
ffiffiffiffiffiffiffiffiffiffiffiffi
D : D

p
,

which is non-linear in D, i.e.
T


¼ A : D þ B

ffiffiffiffiffiffiffiffiffiffiffiffi
D : D

p
: ð1Þ
Herein the fourth order tensorA and the second order tensor B are functions of the current Cauchy stress

tensor T and may also depend on additional state quantities such as the current void ratio e (e.g. Wu and
Bauer, 1992; Bauer and Wu, 1994). The constitutive equation (1) is positively homogeneous of the first

order in D, thus the material behavior to be described is rate independent. Depending on the specific

representation of tensorA the functionA : D describes a hyperelastic or hypoelastic material in the sense
of Truesdell (1955). Together with the non-linear team of B

ffiffiffiffiffiffiffiffiffiffiffiffi
D : D

p
in D an inelastic material behavior is

modeled in hypoplasticity with a single constitutive equation and there is no need to distinguish between

elastic and plastic parts of the deformation (Kolymbas, 1985, 1991). Limit states are included in the

constitutive equation (1) for a vanishing stress rate, i.e. for states with A : D ¼ 	B
ffiffiffiffiffiffiffiffiffiffiffiffi
D : D

p
. Specific rep-

resentations of the tensor functions A and B have to fulfill several conditions which are related to general

principals of rational continuum mechanics and to the mechanical behaviour of granular materials ob-

served in experiments (e.g. Wu and Kolymbas, 1990; Gudehus, 1996; Bauer, 1996). A comprehensive

overview of the procedures followed in finding appropriate functions can be found, for instance, in Wu and
Kolymbas (2000) and Bauer and Herle (2000).

2.2. Pressure and density dependent properties of inherently isotropic materials

The mechanical behavior of cohesionless frictional materials like sand is strongly influenced by the

pressure level and the current density. In order to model such properties the following specific represen-

tation of Eq. (1) for an inherently isotropic material is considered (Gudehus, 1996; Bauer, 1996):
T


¼ fsðe; pÞ½LðT̂Þ : D þ fdðe; pÞNðT̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D : D

p
�; ð2Þ
with
LðT̂Þ ¼ â2Iþ T̂ � T̂; ð3Þ
and
NðT̂Þ ¼ âðT̂ þ T̂�Þ: ð4Þ
Herein the tensors LðT̂Þ and NðT̂Þ are functions of the normalized stress tensor T̂ ¼ T=ðI : TÞ and the
deviatoric part T̂� ¼ T̂ 	 I=3. Factor â in Eqs. (3) and (4) depends on the normalized stress deviator T̂� and

the critical friction angle u:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffi
3=2

p
ðT̂� : T̂�Þ3=2 cosð3hÞ

1þ
ffiffiffiffiffiffiffiffi
3=2

p
ðT̂� : T̂�Þ1=2 cosð3hÞ

vuut
2
4 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T̂� : T̂�

p 3
5; ð5Þ
with the Lode-angle h, which is defined as
cosð3hÞ ¼ 	
ffiffiffi
6

p I : T̂�3

½I : T̂�2�3=2
:

For critical states, which are defined for a stationary stress Tc and stationary void ratio ec under a fixed
strain rate Dc 6¼ 0, factor â is equal to the Euclidean norm of the normalized stress deviator, i.e.
âðT̂�
cÞ ¼ âc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T̂�

c : T̂�
c

q
: ð6Þ
In particular, for critical states, relation â in (5) represents the stress limit condition given by Matsuoka and
Nakai (1977) as shown in Fig. 1a. It can be proved that for monotonic shearing the limit stress states given

by relation (6) will asymptotically be reached independent of the initial void ratio and stress state (Bauer,

2000). The influence of the mean pressure p ¼ 	I : T=3 and the current void ratio e on the response of the
constitutive equation (2) is taken into account by the density factor fd , i.e.
fd ¼
e	 ed
ec 	 ed

� �a

; ð7Þ
and the stiffness factor fs, i.e.
fs ¼
ei
e


 �b 1þ ei
ei

hs
nhiðT̂ : T̂Þ

3p
hs

� �1	n

; ð8Þ
with
hi ¼
8 sin2 u

ð3	 sinuÞ2
þ 1	 2

ffiffiffi
2

p
sinu

3	 sinu
eio 	 edo
eco 	 edo

� �a

:

Herein a < 0:5 and b > 1 are constitutive constants. In particular factor fd models the dilatancy behavior
and the maximum stress ratio while factor fs models the influence of the stress and density on the incre-
mental stiffness. In relations (7) and (8) the maximum void ratio ei, the minimum void ratio ed and the
critical void ratio ec are pressure dependent according to
(a) (b)

^T1

^T2
^T3

âc = √T̂*
c : T̂*

c

θ

ln(p)

e
ei0

ec0

ed0

ed

ei

ec

(a) Contour of the stress limit condition in the deviator-plane, (b) decrease of the maximum void ratio ei, the critical void ratio
the minimum void ratio ed with increasing mean pressure p.
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ei
eio

¼ ed
edo

¼ ec
eco

¼ exp
�
	 3p

hs

� �n�
; ð9Þ
where eio, edo and eco are the corresponding values for p � 0 as shown in Fig. 1b. In relation (9) the
parameter hs with the dimension of stress scales the mean pressure p while the dimensionless exponent n
reflects the degradation of the limit void ratios and the critical void ratio with increasing pressure. It is

obvious that with relation (9) the density factor fd also depends on the mean pressure p with the exception
of states where the current void ratio is equal to the critical one. In this case the function of fd becomes
equal to one, which is independent of the magnitude of the mean pressure. This property of the density

factor plays an important role for a consistent modeling of critical states (Bauer, 1995, 2000). For the

evolution of the current void ratio e the assumption is made that the volume change of grains can be
neglected. To this end, the rate of the void ratio can be directly derived from the mass balance, which yields
_e ¼ ð1þ eÞI : D: ð10Þ

Altogether the hypoplastic model for an initially isotropic material behavior includes eight constants. The

following values u ¼ 30�, hs ¼ 190 MPa, n ¼ 0:4, eio ¼ 1:20, eco ¼ 0:82, edo ¼ 0:51, a ¼ 0:14, b ¼ 1:05 are
adapted to a medium quartz sand and used for the numerical calculations in the present paper. Details
about the calibration procedure can be found for instance in Bauer (1996) and Herle and Gudehus (1999).

2.3. Initially transversely isotropic material

In order to take into account anisotropic properties, the state variables of the hypoplastic constitutive

model are extended with a structure tensor S ¼ s � s represented by the dyadic product of the normal

vector s of the isotropic plane or so-called bedding plane (Fig. 2). It was proposed by Wu (1998) to

incorporate the structure tensor S in the non-linear part of the constitutive equation for the stress rate by a
linear transformation of tensor NðT̂Þ with a fourth order tensor PðSÞ. Thus, the extended evolution
equation for the stress tensor reads
T


¼ fsðe; pÞ LðT̂Þ : D

h
þ fdðe; pÞPðSÞ : NðT̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D : D

p i
; ð11Þ
with
PðSÞ ¼ ðg1 þ g3 	 2g2ÞðS � SÞ þ g3Iþ ðg2 	 g3ÞðS � I þ I � SÞ: ð12Þ
(a) (b)

Bedding plane

s

s

x 1

x 2

T11

T12

T22

T21

Θ

Normal vector s of the isotropic plane (bedding plane): (a) orientation of the bedding plane during sedimentation, (b) stress

nents Tij and inclination angle H of the bedding plane with respect to a fixed Cartesian co-ordinate system.
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e

Fig. 3. Triaxial compression under a constant lateral stress of T11 ¼ 	100 kPa, an initial void ratio of e0 ¼ 0:6, for constant parameters
of anisotropy and for bedding angles of H ¼ 0�, 30�, 60�, 90�: (a) mobilized friction angle /mob against vertical strain e22, (b) evolution
of the void ratio e against vertical strain e22.
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Herein gi ði ¼ 1; 2; 3Þ are material parameters. It should be noted that the choice of representation (12) is
motivated by a similar form originally proposed by Boehler and Sawczuk (1977) to describe the plastic

behavior of a transversely isotropic material. Anisotropy is more pronounced for gi < 1 and vanishes for
gi ¼ 1. For the latter case the tensor function PðSÞ in Eq. (12) reduces to I and the constitutive relation (2)
for an initially isotropic material is recovered.

For g1 ¼ 0:8805, g2 ¼ 0:9764 and g3 ¼ 1:0 the response of the constitutive model for triaxial compres-
sion under constant lateral pressure of T11 ¼ 	100 kPa and an initial void ratio of e0 ¼ 0:6 is shown for
different bedding angles in Fig. 3. The peak friction angle /P ¼ maxð/mobÞ is higher and the dilatancy is
more pronounced for lower bedding angles. After the peak the mobilized friction angle /mob ¼
arcsin½ðT22 	 T11Þ=ðT22 þ T11Þ� slightly decreases and tends towards a stationary value.
2.4. Evolution equation for the parameters of anisotropy

It is obvious that with the constitutive equation (11) and for gi 6¼ 1 the stress limit condition (6) is no
longer met for an initially transverse isotropic material, i.e. the limit stress ratio is influenced by the ori-
entation s of the isotropic plane as it was also discussed by Wu (1998). However, the experimental

investigations by Yamada and Ishihara (1979) and Lam and Tatsuoka (1988) with initially transverse

isotropic sand specimens show that for large monotonic shearing the stress ratio is independent of the initial

orientation of the bedding plane. This indicates that under large shearing the initial anisotropy diminishes

and may be swept out when the material reaches a stationary state. In order to reproduce the experimental

findings an evolution of gi corresponding to the evolution of the density factor fd was proposed by Bauer
and Huang (1999). Herein a degradation of the effect of the initial anisotropy is motivated by the experi-

mental finding that under shearing accompanied by dilatancy, a reorientation of particles and consequently
a reorientation of the direction of the contact planes takes place. Therefore, a relation between the evo-

lution of dilatancy and the evolution of the parameter of anisotropy seems to be appropriate. Specifically,

the rate of gi is assumed to be proportional to the rate of fd , i.e.
_gi ¼ gi0gi
_fd ; ð13Þ
where gi0 ði ¼ 1; 2; 3Þ are constitutive constants. The integration of Eq. (13) with respect to the condition
giðfd ¼ 1Þ ¼ 1 leads to
gi ¼ exp½gi0ðfd 	 1Þ�: ð14Þ
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Thus, the quantities of gi are directly related to the value of the density factor fd given in Eq. (7). It is easy
to prove that for e ¼ ec the density factor and the parameters of anisotropy become fd ¼ gi ¼ 1. For such a
critical state the corresponding critical void ratio and the critical stress ratio are independent of the initial

anisotropy and the initial void ratio. Therefore, the stress limit condition (6) is also met for the extended
constitutive equation (11) if the evolution equation (13) for the parameters of anisotropy is taken into

account.

Based on the improved model the prediction for triaxial compression under a constant lateral stress of

T11 ¼ 	100 kPa, an initial void ratio of e0 ¼ 0:6, and the parameters g10 ¼ 0:8, g20 ¼ 0:15 and g30 ¼ 0 is
shown for different bedding angles in Figs. 4 and 5. In contrast to the results in Fig. 3 the stationary value of

the mobilized friction angle is now independent of the initial anisotropy. Consequently, for stationary states

the stress limit condition (6) is also met for the case of an initially transverse isotropy. With the present

hypoplastic model the peak friction angle depends on both the orientation of the bedding plane and on the
density factor fd . The influence of the initial void ratio e0 and the bedding angleH on the peak friction angle

/P ¼ maxð/mobÞ is shown in Fig. 5. The peak friction angle is higher for H ¼ 0�. The influence of the
orientation of the bedding plane is more pronounced for an initially lower void ratio. In accordance with
(a) (b)

φ mob

− ε22 −ε22

e

Fig. 4. Triaxial compression under a constant lateral stress of T11 ¼ 	100 kPa, an initial void ratio of e0 ¼ 0:6 and for bedding angles
of H ¼ 0�, 30�, 60�, 90�: (a) mobilized friction angle /mob against vertical strain e22, (b) evolution of the void ratio e against vertical
strain e22.

φ P

Θ

e0 = 0.75

e0 = 0.60

e0 = 0.53

Fig. 5. Peak friction angle /P against the bedding angles H for different initial void ratios e0.
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– ε
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22
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Fig. 6. Oedometric compression starting from an initially isotropic stress state of T0 ¼ 	1 kPa and a void ratio of e0 ¼ 0:53: (a) vertical
stress T22 against the vertical strain e22, (b) shear stress T12 against the vertical strain e22.

(a) (b)

T11

T22 e0 = 0.75

e0 = 0.60

e0 = 0.53

T33

T22 e0 = 0.75

e0 = 0.60

e0 = 0.53

Θ Θ

Fig. 7. Oedometric compression starting from an initially isotropic stress state of T0 ¼ 	1 kPa and different initial void ratios e0:
(a) stress ratio T11=T22 against the bedding angle H, (b) stress ratio T33=T22 against the bedding angle H.
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the experimental results (e.g. Lam and Tatsuoka, 1988) the peak friction angle becomes a minimum for

H � 60�.
The influence of the orientation of the bedding plane on the behavior under oedometric compression is

shown in Fig. 6. For all calculations an initially isotropic stress state of T0 ¼ 	1 kPa and a void ratio of
e0 ¼ 0:53 was assumed. The stress–strain relation is non-linear and the magnitude of the vertical stress T22
increases faster for a lower bedding angle (Fig. 6a). Shear stresses T12 ¼ T21 occur as a result of the strain
controlled test with the exception of bedding angles of H ¼ 0� and H ¼ 90� (Fig. 6b). The shear stress is
about sixty times less than the normal stress. The lateral normal stresses T11 and T33 are only equal for
H ¼ 0�. As shown in Fig. 7 the stress ratios T11=T22 and T33=T22 increase with an increase of the bedding
angle and the changes are more pronounced for lower void ratios.
3. Investigation of the formation of shear bands

In this section the influence of the orientation of the bedding plane on the formation of shear bands

under plane strain compression is studied. The possibility of a spontaneous shear band formation is

investigated based on the general bifurcation theory given by Hill (1962), Rudnicki and Rice (1975) and
Rice and Rudnicki (1980). The bifurcation condition is derived in a way similar to the ones outlined for
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isotropic hypoplastic material models in earlier publications (e.g. Chambon and Desrues, 1985; Chambon,

1989; Wu and Sikora, 1991, 1992; Charlier et al., 1991; Bauer, 1999; Wu, 2000; Desrues and Chambon,

2002; Bauer et al., 2003). A comprehensive historical review of the individual contributions can be found

for instance in Tamagnini et al. (2000, 2001). In order to investigate the sensitivity of the shear band
orientation to the slenderness of the specimen the hypoplastic constitutive model was implemented in the

commercial finite element program Abaqus as outlined by Huang (2000). A four-noded quadrilateral ele-

ment for plane strain conditions with bilinear interpolation for the displacements is used. To alleviate the

phenomenon of so-called volumetric locking a selective reduced integration technique is applied (Nagtegaal

et al., 1974). The geometric non-linearity is taken into account using an updated Lagrangian formulation.

The global equilibrium is formulated on the basis of the principle of virtual power and the non-linear

equation system is solved by the Newton–Raphson iteration method. For the time integration of the

constitutive equations a sub-stepping algorithm (Roddeman, 1997) is applied.
3.1. Bifurcation analysis

In the following the possibility of a spontaneous formation of a shear band is studied for a certain state

(T; e) and a certain bedding angle H with respect to a fixed Cartesian co-ordinate system as sketched in Fig.

8. The shear plane or so-called discontinuity plane is characterized by a different velocity gradient rv on

either side of this plane. The jump of the velocity gradient can be represented by the dyadic product of the

unit normal n of the discontinuity plane and a vector g defining the discontinuity mode of the velocity

gradient, i.e.
½½rv�� ¼ g � n 6¼ 0: ð15Þ
Continuous equilibrium across the discontinuity requires (Rice and Rudnicki, 1980):
½½ _T��n ¼ 0: ð16Þ
Herein the jump of the stress rate can be related to the jump of the Jaumann stress rate, i.e.

½½ _T�� ¼ ½½T


�� þ ½½W��T 	 T½½W��, where T



is the response of the hypoplastic model (11) and W denotes the

antisymmetric part of the velocity gradient. Inserting the Jaumann stress rate into Eq. (16) leads to the
relation:
fsðL : ½½D��Þn þ kfsfdðP : NÞn þ ½½W��Tn 	 T½½W��n ¼ 0; ð17Þ
with ½½D�� ¼ ½g � n þ n � g�=2, ½½W�� ¼ ½g � n 	 n � g�=2 and k ¼ ½½
ffiffiffiffiffiffiffiffiffiffiffiffi
D : D

p
��. At the onset of shear banding

the stress and the void ratio are the same on either side of the discontinuity plane. Thus, the quantities fs, fd ,
Fig. 8. Orientation of the bedding plane H and of the shear band # and # ¼ P 	 #.
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L, P and N are also the same and they are independent of the velocity gradient. It is a peculiarity in

hypoplasticity that the possibility of different incremental stiffnesses due to a different velocity gradient on

either side of the discontinuity is taken into account by the single relation (17) and there is no need to

distinguish whether the material outside the shear band undergoes loading or unloading (e.g. Chambon and
Desrues, 1985; Wu and Sikora, 1991; Bauer and Huang, 1997). Relation (17) can be rewritten as Kg ¼ kr or
Fig. 9.

consta
g ¼ kK	1r; ð18Þ
with K ¼ fs½â2ðI þ n � nÞ=2þ ðT̂ðn � nÞÞT̂� þ ½ðnðTnÞÞI 	 ðn � nÞT 	 T þ Tðn � nÞ�=2, and r ¼
	fsfdðP : NÞn. Inserting relation (18) for g into the norm of ½½D��, i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½½D�� : ½½D��

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðggÞ þ ðgnÞ2�=2
q

¼ c leads to the bifurcation condition:
f ð#Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK	1rÞðK	1rÞ þ ððK	1rÞnÞ2

2

s
	 c
jkj ¼ 0: ð19Þ
The components of the unit normal n of the discontinuity plane are related to the unknown shear band

inclination angle #, i.e. n ¼ ½	 sin#; cos#; 0�T with respect to the co-ordinate system in Fig. 8. K and r
depend on the current state quantities (e;T) and on the inclination angleH of the bedding plane. In order to

find the lowest possible bifurcation stress ratio the value of c=jkj can be set equal to 1 (Wu and Sikora, 1992;
Bauer, 1999). Thus, relation (19) represents an equation for the unknown #, whereby only real solutions to
(19) indicate the possibility of a shear band bifurcation.

In the following the bifurcation condition (19) is examined for stress paths which are related to

homogeneous compression under plane strain conditions and a constant lateral pressure starting from an

isotropic stress state (Fig. 9). The lowest bifurcation stress ratio obtained from the bifurcation analysis

occurs before the peak state and it is marked by a dot. Therefore the solid curves in Fig. 9 denote states in
which a spontaneous shear band bifurcation is not possible. But states above the first bifurcation point

(dotted/dashed curves) again fulfill criterion (19) also for c > jkj as discussed in detail for an inherently
isotropic material by Bauer (1999). The lowest bifurcation stress ratio is higher for a lower bedding angle.

Solutions to the bifurcation condition (19) are analyzed within 0�6#6 180� as shown in Fig. 10 for
bedding angles of 0�, 30�, 60� and 90�. The analysis shows that for H ¼ 0� and H ¼ 90� (Fig. 10a, d) two
shear band inclination angles # are obtained at the same bifurcation stress state for f ð#Þ ¼ 0. The two
Stress–strain relation and onset of shear band bifurcation for homogeneous compression under plane strain conditions and a

nt lateral pressure T11 ¼ 	100 kPa, an initial void ratio e0 ¼ 0:6 and different bedding angles H.



Fig. 10. Function f ð#Þ corresponds to bifurcation point for bedding angle: (a) H ¼ 0�, (b) H ¼ 30�, (c) H ¼ 60�, (d) H ¼ 90�.
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possible shear bands are symmetric to the x2-axis. However, within the range of 0� < H < 90� only one
single shear band is possible at the lowest bifurcation stress state and the corresponding shear band

inclination angles # are greater than 90�. The results in Fig. 10b and c show that the difference between the
two peak values for f ð#Þ is very small, which indicates that a shear band within the range of 0� < # < 90�
could also appear as a result of deviations from the ideal conditions assumed for the present investigation.

Moreover, for states beyond the first bifurcation point more than one shear band is possible and also shear

bands within the range of 0� < # < 90� will occur. In contrast to an isotropic material the inclination of the
second shear band obtained for an anisotropic material is usually not symmetric to the x2 axis as can be
detected in Fig. 10b and c. The supplementary shear band inclination angle # ¼ 180�	 # versus

the bedding angle H is represented in Fig. 11a. The predicted shear band inclination # has a maximum
Fig. 11. (a) Supplementary inclination angle # ¼ 180�	 # versus bedding angle H, (b) shear band inclination # versus initial void ratio
e0.
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for H � 20� while the minimum value is obtained for H ¼ 90�. The influence of the initial void ratio
e0 on the shear band inclination # is shown for various bedding angles H in Fig. 11b. The predicted

shear band inclination is higher for a lower void ratio and decreases with an increase of the void

ratio.

3.2. Influence of the off-axis loading on the shear band orientation

The bifurcation analysis carried out in the preceding section does not reflect the complete bifurcation

and stability behavior of a standard biaxial compression test with a mixed control of the stress and dis-

placement boundary conditions. For an anisotropic material the principal stresses and the principal strains

are not usually coaxial so that the stress and void ratio distribution within a real specimen becomes

inhomogeneous as a result of the off-axis loading. The off-axis loading can show a strong influence on the

orientation of the shear band depending on the slenderness of the specimen as demonstrated in the fol-

lowing for two different sizes of rectangular samples: a slender sample with an initial width of 25 mm and a

height of 100 mm, and a stout sample with an initial width of 50 mm and a height of 100 mm. For the finite
element calculation the samples are discretized by quadratic elements with a length of 1.25 mm. The test is

controlled by increasing the vertical displacement at the top parallel to the bottom. The horizontal

movement of the top side and the bottom side is unrestricted with the exception of the center of the top side.

On the vertical sides of the specimen the pressure is kept constant and the boundaries are free to move. For

all calculations the same initially isotropic stress states of T0 ¼ 	100 kPa and a bedding plane angle of
H ¼ 30� are assumed.
For the case of a slender specimen and an initially homogeneous void ratio of e0 ¼ 0:6 the distribution of

the deviatoric strain rate and of the void ratio in the deformed configuration is shown in Fig. 12 for several
vertical displacements. In particular the darker area in Fig. 12I means a higher deviatoric strain rate, while

the brighter area in Fig. 12II means a higher void ratio as a result of dilatancy. The rectangular specimen

assumes a skewed shape (S-shape) at a relatively low strain level. This is different from the result with an

isotropic model, where the specimen keeps its rectangular shape up to a fairly high strain level (Bauer and

Huang, 1997). The distortion of the anisotropic specimen is ascribed to the non-coaxiality between stress

and strain rate. A closer examination of the expression PðSÞ in the constitutive equation (11) reveals that
the stress and strain rates are coaxial only for the bedding angles of 0� and 90�. It should be noted that in
the present finite element calculation the location of strain localization is triggered by the off-axis loading
and no weak element is introduced to initiate the onset of strain localization. Thus, strain localization

develops from the middle of the sample (Fig. 12.I.a). The orientation of intense strain localization right

after the onset is greater than 90� as it is also obtained from the shear band bifurcation analysis in Section
3.1. However, with advanced vertical compression the area of intense strain localization jumps to an

inclination angle of less than 90� as can be detected by comparing Fig. 12.I.a with Fig. 12.I.b, and the
orientation of the final shear band lies within the same quadrant as the inclination of the bedding plane

(Fig. 12.I.c).

While the deviatoric strain rate distribution is instantaneous, the corresponding contour plot of the void
ratio is cumulative and represents the deformation history within the sample (Fig. 12.II.a–c). It is clearly

visible that the zone of strain localization in Fig. 12.I.c is smaller than the band of higher void ratios in Fig.

13.II.c. This suggests that the distribution of the void ratio does not clearly permit an unequivocal iden-

tification of the active thickness of the shear band. In this context it is worth noting that the present finite

element calculation is more of a qualitative than quantitative nature because the thickness of the localized

zone depends on the size of the finite element. This shortcoming of classical continuum models can be

overcome for instance by an extension of the constitutive model to a Cosserat continuum as proposed for

an isotropic hypoplastic material model by Tejchman and Bauer (1996), Tejchman (1997), Tejchman and
Gudehus (2001), Huang et al. (2002), and Huang and Bauer (2003).



Fig. 12. Biaxial compression of a slender sample (h=b ¼ 4) under a constant lateral pressure and an initially constant void ratio: (I)
concentration of the deviatoric strain rate and (II) contour plot of the void ratio for a vertical displacement of: (a) 5 mm, (b) 6 mm and

(c) 7 mm.
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In order to investigate the sensitivity of the shear band orientation with respect to the fluctuation of the

initial density a finite element calculation with a probabilistic distribution of the initial void ratio was

performed. Herein the probabilistic distribution of the void ratio is modeled in the same way as proposed

by Shahinpoor (1981) and applied to finite element calculations by N€ubel (1998). The results obtained for
the slender sample are shown in Fig. 13.

A comparison of Fig. 12 with Fig. 13 at a low strain level shows that the skewed specimen shape (Fig. 12)

cannot be observed in Fig. 13. It seems that the distortion of the specimen is suppressed by the probabilistic

void ratio. This interesting phenomenon deserves further investigation. Furthermore, a crossed band
pattern with intense strain localization can be observed in the same configuration (Fig. 13.I.a and I.b), while

only one single band is dominant in the case of an initially constant void ratio (Fig. 12.I.a). With advanced

vertical compression strain localization continues to localize only within a single band in both cases (Fig.

12.I.c and Fig. 13.I.c). The location of the final band is influenced by the probability distribution of the

initial void ratio. However, the inclination of the shear band is the same in both cases with homogeneously

and probabilistically distributed void ratios.



Fig. 13. Biaxial compression of a slender sample (h=b ¼ 4) under constant lateral pressure and probabilistic distribution of the initial
void ratio: (I) concentration of the deviatoric strain rate and (II) contour plot of the void ratio for a vertical displacement of: (a) 3.5

mm, (b) 4 mm and (c) 7 mm.
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The influence of the size of the sample on the final orientation of the shear band is shown in Fig. 14 for a

stout sample with a probabilistic distribution of the initial void ratio. As the inclination of the specimen

remains small, the off-axis loading is not significant so that the inclination of strain localization at the

lowest possible stress state becomes dominant. Thus, the ratio of the height to the width of the sample

determines the off-axis loading and consequently influences the orientation of the final shear band.
4. Conclusions

The present paper treats initial and induced anisotropy in a unified way. The initial anisotropy is ac-

counted for by a structure tensor, which is defined by the dyadic product of the normal vector of the
isotropic plane. In order to account for the influence of particle rotation at the microscopic level the



Fig. 14. Biaxial compression of a stout sample (h=b ¼ 2) under constant lateral pressure and probabilistic distribution of the initial void
ratio: (I) concentration of the deviatoric strain rate and (II) contour plot of the void ratio for a vertical displacement of: (a) 4 mm, (b)

4.5 mm and (c) 7 mm.
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coefficients of the tensorial function are allowed to evolve. It is assumed that for large shearing the influence

of anisotropy declines and the stress ratio and the volume strain tend towards a stationary state which is

independent of the initial state.

The effect of initial anisotropy on shear band formation is investigated by analytical and numerical

methods. The analytical results show that shear banding is strongly influenced by the stress state, the
current void ratio and the orientation of the bedding plane. At the lowest bifurcation stress ratio only a

single shear band is possible with the exception of loading parallel or perpendicular to the direction of the

bedding plane, where two symmetric shear bands appear. The inclination of the shear band is higher for

lower void ratios and lower bedding angles. In the case of a slender sample the results of the numerical

simulations of plane strain compression tests show a jump from a steep shear band to a flat shear band with

increasing axial displacement. Thus the orientation of shear strain localization obtained from the analytical

bifurcation analysis is different from the orientation detected under larger deformation. Since the analytical

solution deals with one single element under uniform stress, the shear band orientation may deviate from
that appearing in a full boundary value problem. The distribution of the deviatoric strain rate and the void

ratio justifies distinguishing between the active thickness of the shear band in the current configuration and

the shear band thickness related to the history of shear dilatancy which is manifested by a higher void ratio.

The calculations with an initially probabilistic void ratio distribution show numerous potential shear bands

at low strain level. With increasing deformation a dominant shear band emerges out of the numerous

potential shear bands. The latter is thought to be particularly relevant for progressive failure in natural

sand deposits, where the void ratios also vary within a wide range.
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The present paper is a first attempt in the numerical investigation of shear band formation in anisotropic

sand. The result on shear band thickness is only indicative, since the underlying constitutive model does not

possess a characteristic length. However, the constitutive equation can be readily extended to incorporate a

characteristic length via the Cosserat continuum. Nevertheless the main outcomes of the present paper will
remain valid.
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